Problem 1.7

Two long, cylindrical conductors of radii a_{1} and a_{2} are parallel and separated by a distance d, which is large compared with either radius. Show that the capacitance per unit length is given approximately by

$$
C \simeq \pi \epsilon_{0}\left(\ln \frac{d}{a}\right)^{-1}
$$

where a is the geometrical mean of the two radii.
Approximately what gauge wire (state diameter in millimeters) would be necessary to make a two-wire transmission line with a capacitance of $1.2 \times 10^{-11} \mathrm{~F} / \mathrm{m}$ if the separation of the wires was 0.5 cm ? $1.5 \mathrm{~cm} ? 5.0 \mathrm{~cm}$?

Solution

The governing equations of the electric field are Gauss's law and Faraday's law. In the context of electrostatics in vacuum they are

$$
\begin{align*}
\nabla \cdot \mathbf{E} & =\frac{\rho}{\epsilon_{0}} \tag{1}\\
\nabla \times \mathbf{E} & =\mathbf{0}
\end{align*}
$$

This second equation implies the existence of a potential function $-\Phi$ that satisfies

$$
\begin{equation*}
\mathbf{E}=\nabla(-\Phi)=-\nabla \Phi . \tag{2}
\end{equation*}
$$

The minus sign is arbitrary mathematically, but physically it indicates that a positive charge in an electric field moves from high-potential regions to low-potential regions (and vice-versa for a negative charge). Assuming that empty space, or vacuum, separates the conductors, the capacitance is

$$
C=\frac{Q}{\Phi} .
$$

Note that Φ is interpreted as the work it takes to move a positive unit charge from the low-potential conductor to the high-potential conductor. Begin by finding the electric field of a long charged cylinder with radius R and length L.

Integrate both sides of equation (1) over the volume V_{0} enclosed by the black Gaussian surface shown above.

$$
\iiint_{V_{0}} \nabla \cdot \mathbf{E} d V=\iiint_{V_{0}} \frac{\rho}{\epsilon_{0}} d V
$$

Using the divergence theorem on the left side results in the integral form of Gauss's law.

$$
\oiint_{S_{0}} \mathbf{E} \cdot d \mathbf{S}=\frac{1}{\epsilon_{0}} \iiint \int_{V_{0}} \rho d V
$$

The volume integral on the right is the total charge enclosed; since the charge is evenly distributed on the cylinder, the total enclosed charge is $\sigma\left(2 \pi R L_{0}\right)$, where $\sigma=Q /(2 \pi R L)$.

$$
\oiint_{S_{0}} \mathbf{E} \cdot d \mathbf{S}=\frac{1}{\epsilon_{0}}\left(\frac{Q}{L} L_{0}\right)
$$

Because of the symmetry with respect to the cylinder's axis, the electric field is entirely radial: $\mathbf{E}=E_{r} \hat{\mathbf{r}}$.

$$
\oiint_{S_{0}} E_{r} \hat{\mathbf{r}} \cdot(\hat{\mathbf{r}} d S)=\frac{1}{\epsilon_{0}}\left(\frac{Q}{L} L_{0}\right)
$$

E_{r} is constant on the Gaussian surface S_{0}, so it can be pulled in front of the integral.

$$
E_{r} \oiint_{S_{0}} d S=\frac{1}{\epsilon_{0}}\left(\frac{Q}{L} L_{0}\right)
$$

Solve for E_{r}, the electric field magnitude.

$$
\begin{gathered}
E_{r}\left(2 \pi r L_{0}\right)=\frac{Q L_{0}}{\epsilon_{0} L} \\
E_{r}=\frac{Q}{2 \pi \epsilon_{0} r L}
\end{gathered}
$$

In this problem there are two long parallel cylinders with radii, a_{1} and a_{2}, and charges, $+Q$ and $-Q$, respectively, so the plan is to apply the principle of superposition to obtain the total electric field at a point between the cylinders in the same plane.

Add the electric fields from each of the cylinders vectorially to obtain the total electric field.

$$
\begin{aligned}
\mathbf{E} & =\frac{+Q}{2 \pi \epsilon_{0} x L} \hat{\mathbf{x}}+\frac{-Q}{2 \pi \epsilon_{0}\left(a_{1}+d+a_{2}-x\right) L}(-\hat{\mathbf{x}}) \\
& =\frac{Q}{2 \pi \epsilon_{0} L}\left(\frac{1}{x}+\frac{1}{a_{1}+d+a_{2}-x}\right) \hat{\mathbf{x}} \\
& =\frac{Q}{2 \pi \epsilon_{0} L}\left(\frac{1}{x}-\frac{1}{x-a_{1}-d-a_{2}}\right) \hat{\mathbf{x}}
\end{aligned}
$$

Since what we need is the potential difference between the cylinders, we consider the x-component of equation (2) for $a_{1}<x<a_{1}+d$.

$$
\mathbf{E}=-\nabla \Phi \quad \rightarrow \quad E_{x}=-\frac{d \Phi}{d x} \quad \rightarrow \quad \Phi(x)=-\int E_{x} d x
$$

Φ is the work required to move a positive unit charge from the (low-potential) $-Q$ cylinder to the (high-potential) $+Q$ cylinder, so the limits of integration go from $a_{1}+d$ to a_{1}.

$$
\begin{aligned}
\Phi & =-\int_{a_{1}+d}^{a_{1}} \frac{Q}{2 \pi \epsilon_{0} L}\left(\frac{1}{x}-\frac{1}{x-a_{1}-d-a_{2}}\right) d x \\
& =\frac{Q}{2 \pi \epsilon_{0} L} \int_{a_{1}}^{a_{1}+d}\left(\frac{1}{x}-\frac{1}{x-a_{1}-d-a_{2}}\right) d x
\end{aligned}
$$

Evaluate the integral and simplify the result.

$$
\begin{aligned}
\Phi & =\frac{Q}{2 \pi \epsilon_{0} L}\left(\int_{a_{1}}^{a_{1}+d} \frac{d x}{x}-\int_{a_{1}}^{a_{1}+d} \frac{d x}{x-a_{1}-d-a_{2}}\right) \\
& =\frac{Q}{2 \pi \epsilon_{0} L}\left(\left.\ln |x|\right|_{a_{1}} ^{a_{1}+d}-\left.\ln \left|x-a_{1}-d-a_{2}\right|\right|_{a_{1}} ^{a_{1}+d}\right) \\
& =\frac{Q}{2 \pi \epsilon_{0} L}\left(\ln \left|a_{1}+d\right|-\ln \left|a_{1}\right|-\ln \left|-a_{2}\right|+\ln \left|-d-a_{2}\right|\right) \\
& =\frac{Q}{2 \pi \epsilon_{0} L}\left[\ln \left(a_{1}+d\right)-\ln a_{1}-\ln a_{2}+\ln \left(d+a_{2}\right)\right] \\
& =\frac{Q}{2 \pi \epsilon_{0} L} \ln \frac{\left(d+a_{1}\right)\left(d+a_{2}\right)}{a_{1} a_{2}} \\
& =\frac{Q}{2 \pi \epsilon_{0} L} \ln \left[\frac{d^{2}}{a_{1} a_{2}}\left(1+\frac{a_{1}}{d}\right)\left(1+\frac{a_{2}}{d}\right)\right]
\end{aligned}
$$

Since $d \gg a_{1}$ and $d \gg a_{2}$, these terms in parentheses are very close to 1 .

$$
\Phi \approx \frac{Q}{2 \pi \epsilon_{0} L} \ln \left[\frac{d^{2}}{a_{1} a_{2}}(1)(1)\right]=\frac{Q}{2 \pi \epsilon_{0} L} \ln \frac{d^{2}}{a_{1} a_{2}}=\frac{Q}{\pi \epsilon_{0} L} \ln \frac{d}{\sqrt{a_{1} a_{2}}}
$$

This quantity $a=\sqrt{a_{1} a_{2}}$ is called the geometric mean of a_{1} and a_{2}.

$$
\Phi \approx \frac{Q}{\pi \epsilon_{0} L} \ln \frac{d}{a}
$$

The capacitance of these two parallel cylinders is then

$$
C=\frac{Q}{\Phi} \approx \frac{Q}{\frac{Q}{\pi \epsilon_{0} L} \ln \frac{d}{a}}=\frac{\pi \epsilon_{0} L}{\ln \frac{d}{a}} .
$$

Therefore, the capacitance per unit length is

$$
\frac{C}{L} \approx \pi \epsilon_{0}\left(\ln \frac{d}{a}\right)^{-1}
$$

Since we want to determine the wire diameter, solve this formula for $2 a$.

$$
\begin{gathered}
\ln \frac{d}{a} \approx \frac{\pi \epsilon_{0}}{\frac{C}{L}} \\
-\ln \frac{a}{d} \approx \frac{\pi \epsilon_{0}}{\frac{C}{L}} \\
\frac{a}{d} \approx \exp \left(-\frac{\pi \epsilon_{0}}{\frac{C}{L}}\right)
\end{gathered}
$$

Multiply both sides by $2 d$.

$$
2 a \approx 2 d \exp \left(-\frac{\pi \epsilon_{0}}{\frac{C}{L}}\right)
$$

Assuming a capacitance per unit length of $1.2 \times 10^{-11} \mathrm{~F} / \mathrm{m}$, the diameter is about

$$
2 a \approx 2 d \exp \left(-\frac{\pi \epsilon_{0}}{\frac{C}{L}}\right) \approx 2(5 \mathrm{~mm}) \exp \left[-\frac{\pi\left(8.854 \times 10^{-12}\right)}{1.2 \times 10^{-11}}\right] \approx 1 \mathrm{~mm}
$$

if the separation distance is $d=0.5 \mathrm{~cm}=5 \mathrm{~mm}$, the diameter is about

$$
2 a \approx 2 d \exp \left(-\frac{\pi \epsilon_{0}}{\frac{C}{L}}\right) \approx 2(15 \mathrm{~mm}) \exp \left[-\frac{\pi\left(8.854 \times 10^{-12}\right)}{1.2 \times 10^{-11}}\right] \approx 3.0 \mathrm{~mm}
$$

if the separation distance is $d=1.5 \mathrm{~cm}=15 \mathrm{~mm}$, and the diameter is about

$$
2 a \approx 2 d \exp \left(-\frac{\pi \epsilon_{0}}{\frac{C}{L}}\right) \approx 2(50 \mathrm{~mm}) \exp \left[-\frac{\pi\left(8.854 \times 10^{-12}\right)}{1.2 \times 10^{-11}}\right] \approx 9.8 \mathrm{~mm}
$$

if the separation distance is $d=5.0 \mathrm{~cm}=50 \mathrm{~mm}$.

